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Abstract

A numerical model is developed with the aim of describing the macroscopic mechanical response of
unidirectional brittleÐmatrix _ber!reinforced composites subjected to stresses acting in any plane transverse
to the _bers[ Finite element analyses of a representative unit cell are performed\ with suitable boundary
conditions ensuring continuity of the displacement _eld across adjacent cells and periodicity of the strain
_eld over the cell[ A strainÐsoftening constitutive law is adopted for the matrix in tension to allow\ for
instance\ for brittleness induced by possible defects in a polymeric matrix[ The perfectly plastic case is also
considered for sake of comparison[ Results established for ductile composites are found to be inappropriate
for brittle matrix composites] numerical analyses show that composites with softening matrix have transverse
strength properties much poorer than perfectly plastic composites with matrix of equal strength\ and even
than the unreinforced matrix[ An induced transverse anisotropy in the post!peak regime is also observed[ A
discussion on the proposed approach concludes the note[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Micromechanics is widely employed to relate the overall properties of strongly heterogeneous
media with the properties of the constituents and the microstructure[ In this context\ the term
{homogenization| usually quali_es the passage from the micro! to the macro!scale[ The fun!
damentals of the methods mostly employed to evaluate\ either exactly or approximately\ a number
of mechanical parameters for heterogeneous media of di}erent nature are described by Suquet
"0876#\ Aboudi "0880#\ Nemat!Nasser and Hori "0882#\ only to quote a few[ A micromechanical
approach gives useful insight into the mechanisms that control the global response of the material[
Also\ micromechanics allows in principle the design of new composites that have to ful_ll certain
behavioural constraints\ by properly selecting the constituents and the geometry of the phases[
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Most works on homogenization address the elastic _eld that\ historically\ was the _rst to be
explored[ On account of the widespread use of metalÐmatrix composites\ an important number of
papers has been more recently published regarding the description of the macroscopic behaviour
of elasticÐperfectly plastic "Dvorak and Bahei!el!Din\ 0876^ Pindera and Aboudi\ 0877# and strain!
hardening "Aboudi\ 0877^ Dvorak et al[\ 0877^ Dvorak and Bahei!el!Din\ 0880# _ber!reinforced
composites "FRCs#[ Techniques based on homogenization coupled with limit analysis provide
estimates for the macroscopic strength of composites\ either with perfect or imperfect interfacial
bonding "de Buhan and Taliercio\ 0880^ Taliercio\ 0881^ Taliercio and Sagramoso\ 0884#[ These
results are of interest when only the overall bearing capacity of the composite is investigated and
the entire macroscopic nonlinear stressÐstrain law is a detailed but unnecessary information[
Micromechanical techniques have also been employed with reference to other types of material
behaviour] the viscoelastic case has been studied since the pioneering works of Hashin "0854\
0855#\ based on the modelisation of a FRC as an assemblage of composite cylinders[ Recently\
sophisticated analysis methods have been formulated with reference to viscoplastic composites
"Fotiu and Nemat!Nasser\ 0885#[

Beyond the elastic range\ polymerÐmatrix composites are often assimilated to perfectly plastic
materials*when the short!term response of these materials is analyzed and time e}ects can be
neglected[ Actually\ thermosetting resins embedding ~aws\ possibly originated by the manu!
facturing process\ exhibit a brittle behaviour in tension "Hull\ 0870#[ Another important class of
brittleÐmatrix composites\ or BMCs\ is obviously formed by ceramic composites[ The number of
works covering micromechanics applied to BMCs is rather limited] some of the works recently
published on this subject are quoted hereafter[ Bosco and Carpinteri "0884# investigated the ~exural
response of structural elements made of BMCs using a bridged!crack model[ Dharani and Ji "0885#
determined the local displacement _eld in a composite where a non!axisymmetric crack cuts part
of the matrix[ Hild et al[ "0885# employed continuum damage mechanics to derive the macroscopic
stressÐstrain law for a damaged composite] matrix cracking and interface debonding are described
through microscopic damage variables[ Zhang et al[ "0885# focused their attention upon the
evaluation of stress intensity factors associated with cracks in the matrix and at the _berÐmatrix
interface\ assuming the uncracked matrix to be linear elastic[ The quoted papers are mainly
addressed to _ber composites loaded parallel to the _bers[ Dealing with this speci_c loading
condition allowed the authors of some of these papers to obtain solutions in a semi!analytical
form[ To the authors| knowledge\ heterogeneous periodic media with brittle constituents have not
been analyzed yet under general loading conditions[

This paper describes a numerical model to analyze unidirectional\ long!_ber composites with
strainÐsoftening matrix\ subjected to stresses acting in any plane transverse to the _bers[ It is in
this plane that matrix brittleness is likely to play the most important role\ since the strengthening
e}ect of the _bers is quite negligible[ After having brie~y recalled some elements of homogenization
for periodic media "Section 1#\ the employed numerical model is illustrated in Section 2[ First\ the
_nite element discretization used to analyze a representative unit cell is described "Section 2[0#^ the
kinematic boundary conditions that ensure periodicity of the microscopic strain _eld and continuity
of the displacement _eld across adjacent cells are explicitly derived in an Appendix[ The dis!
placement boundary conditions that allow the simulation of elementary macroscopic strains and
stresses over the cell are outlined in Section 2[1[ The constitutive model adopted for the matrix
material is described in Section 2[2] it is featured by a plastic strainÐhardening response in



A[ Taliercio\ R[ Coruzzi : International Journal of Solids and Structures 25 "0888# 2480Ð2504 2482

Fig[ 0[ "a# Unidirectional composite with hexagonal reinforcing array and "b# possible choice for the unit cell[

compression and a strain!softening behaviour in tension[ Two post!peak softening responses are
considered\ one describing a gradual strength decay with strain and the other one featured by an
abrupt drop in strength] the latter case is meant to be a _rst attempt to analyze ceramic composites\
exhibiting perfectly brittle behaviour[ Section 3 is devoted to numerical applications[ The reliability
of the numerical model in the elastic range is _rst checked in Section 3[0 through comparisons
with experimental results[ Then the results of analyses of the unit cell subjected to elementary
transverse macroscopic stresses "e[g[ uniaxial tension or pure shear# are illustrated and critically
examined in Section 3[1^ the perfectly plastic case is also considered for sake of comparison[ A
discussion about the sensitivity of the results to mesh re_nement is made in Section 3[1[0[ Merits
and limitations of the proposed approach are discussed in a _nal section\ where possible improve!
ments and future developments are also outlined[

1[ Homogenization theory] basic concepts

In dealing with highly heterogeneous media\ it is customary to substitute the real medium
with an ideal\ homogeneous continuum with properties to be derived through analyses of a
{Representative Volume Element| "RVE*see e[g[ Nemat!Nasser and Hori\ 0882#^ the volume of
the RVE will be indicated by V[ Here\ attention is focused on composite materials evenly reinforced
by long\ parallel _bers of equal section[ If any randomness in the reinforcing array is neglected\
unidirectional FRCs can be considered as periodic media[ For this class of heterogeneous media\
a single {unit cell| can be taken as RVE[ The entire periodic medium can be seen as a collection of
contiguous\ equal unit cells[ Figure 0 shows a possible choice of unit cell for unidirectional
composites with hexagonal reinforcing array] this is the case that will be considered in numerical
analyses for its importance in applications[ Indeed\ with _bers of equal circular cross!section\ a
regular hexagonal array gives the highest percentage of reinforcement\ which can ideally attain
80) of the total volume of the composite element[ Note that the length of the unit cell along the
_ber axis\ x2\ is immaterial[

Stresses and strains at any point of the homogenized medium "also called {macroscopic| stresses
and strains and denoted by S and E\ respectively# are assumed to be the averages over any RVE
of the corresponding local "or microscopic# quantities\ s and o[ It is expedient to compute S and
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Fig[ 1[ Boundary tractions t taking equal and opposite values at two corresponding points\ P and P?\ of the boundary
of any unit cell[

E in terms of stresses and displacements along the boundary 1V of the RVE "see e[g[ Nemat!
Nasser and Hori\ 0882#]

S �
0

=V= g1V

x & t dS^ "0a#

E �
0

=V= g1V

0
1
"u & n¦n & u# dS[ "0b#

Here\ x denotes any point of the RVE and its boundary\ u the microscopic displacement _eld\ n
the outward unit normal to 1V and t � s = n the boundary tractions[ The symbol & denotes dyadic
tensor product[ Equation "0a# applies if body forces are neglected^ incidentally note that\ if s is
divergence!free\ the symmetry of S is implicit in de_nition "0a#[ In applications\ eqns "0a\ b# allow
a simpli_ed computation of the macroscopic variables\ in comparison with volume integrals over
the RVE[ Another advantage from using eqns "0a\ b# is that these de_nitions apply also if the real
medium embeds cracks\ across which displacements are discontinuous\ or pressure!free cavities[
In these cases\ 1V must not intersect any void and must be intended as the outer boundary of the
RVE "thus excluding the boundary of cracks and cavities#[

In the case of periodic media\ the microscopic _elds have to ful_ll suitable periodicity conditions
ensuring continuity of boundary tractions and displacements across adjacent cells "see e[g[ Suquet\
0876#[ t must take equal and opposite values at two corresponding points of 1V "Fig[ 1#\ i[e[\ t
must be anti!periodic on 1V\ and u must be of the form

u"x# � E = x¦v"x# "1#

with v"x# periodic over V[ A displacement _eld ful_lling eqn "1# is also said to be {strain!periodic|
"Suquet\ 0876#[ No macroscopic strain is associated with v[ For periodic media\ the appropriateness
of S and E as mechanically meaningful macroscopic variables is furtherly supported by the rate!
of!work equivalence "also known as {Hill|s macro!homogeneity equality|#]

S] Eþ �
0

=V= gV

s] o¾ dV[ "2#
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Equation "2# has to be modi_ed if discontinuity surfaces exist in the cell for the microscopic
velocity _eld[ Note that\ for heterogeneous media other than periodic\ eqn "2# applies only under
particular boundary conditions in terms of stresses or displacements "see e[g[ Nemat!Nasser and
Hori\ 0882#[ For periodic media\ eqn "2# shows that S and Eþ are conjugate variables in the
expression of the rate!of!work referred to any unit cell[ Equation "2# is the basis of energy
approaches to evaluate bounds to the yield strength of _ber composites "Suquet\ 0871^ de Buhan
and Taliercio\ 0880#[

The incremental macroscopic "or homogenized# constitutive law of any composite with periodic
structure can be obtained\ for instance\ by imposing a given macroscopic stress increment to the
unit cell and _nding the corresponding macroscopic strain rate[ This amounts at solving the
following problem for the unit cell]

given Sþ\ _nd u¾ "cEþ# such that

Sþ �
0

=V= g1V

x &"s¾ = n# dS "3a#

div s¾ � 9 in V "3b#

t¾� s¾ = n anti!periodic on 1V "3c#

Eþ �
0

=V= g1V

0
1
"u¾ & n¦n & u¾# dS "3d#

u¾−Eþ = x periodic on V "3e#

s¾ � f"o¾"u¾## in V[ "3f#

In eqns "3aÐf# the explicit dependence on x of the microscopic variables was dropped for sake of
brevity[ Equation "3f# represents the microscopic constitutive law at any point of the unit cell\ o¾
being the strain rate consistent with the displacement rate u¾[ The problem "3aÐf# is well posed\ for
instance\ in the linear elastic case "Suquet\ 0871#] in this case\ a formulation in terms of total
variables is obviously possible instead of an incremental one[ The well!posedness of problem "3aÐ
f# was also shown by Suquet "0871# for dissipative standard components\ such as elastoplastic\
strainÐhardening components following the normality rule[

The homogenization problem "3aÐf# has been applied by other authors\ either in incremental or
_nite form\ to periodic media other than FRCs[ Marigo et al[ "0876# employed this approach to
describe the macroscopic response of elasto!plastic\ regularly perforated plates[ More recently\
Anthoine "0884# applied the same formulation to derive the in!plane elastic characteristics of brick
masonry[ In both cases\ comparisons with available experimental results and the theoretical
predictions of other authors con_rmed the reliability of the proposed approach[

2[ Numerical model

2[0[ Finite element discretization

In this paper\ only the response of FRCs subjected to loads acting in any plane transverse to the
_bers is investigated[ Thus\ a two!dimensional "1!D# _nite element discretization of a unit cell
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Fig[ 2[ "a# Hexagonal reinforcing array and unit cell^ "b# geometry of the unit cell and _nite element discretization[

lying in any plane transverse to the _bers is performed[ To make the 1!D model representative of
a long!_ber composite subjected to transverse loads\ numerical analyses would have to be carried
out assuming {generalized| plane strain conditions "see\ e[g[\ the work by Francescato and Pastor\
0886#[ In the present work\ the _bers are much sti}er than the matrix and prevent the composite
to deform in the axial direction[ Thus\ strains can be reasonably supposed to be locally plane and
all analyses are carried out assuming plane strain conditions for the sake of simplicity[

Considering a regular hexagonal reinforcing array\ a possible choice for the unit cell is shown
in Fig[ 2"a#[ Both x0 and x1 are symmetry axes for the cell[ Provided that suitable boundary
conditions are imposed along one of the symmetry axis\ only one half of the cell can be analyzed[
Since the stress gradient is likely to be higher in the matrix than in the _ber\ a _ner discretization
was performed in the matrix region[ The selected hexagonal cell naturally lends itself to be evenly
subdivided into _nite elements with aspect ratio near to one[ Also\ the _nite elements have no
prevailing orientation[ These features are important\ since\ when BMCs are dealt with\ mesh!
orientation e}ects might signi_cantly a}ect the _nite element solution in terms of crack orientation
and macroscopic response[

The _nite element mesh adopted in applications is shown in Fig[ 2"b#] it consists of 529 four!
noded elements in the entire matrix region and of 249 three! and four!noded elements in the _ber
region[ The total number of nodes\ each having two degrees of freedom\ is 0003[ This mesh was
selected based on a mesh!sensitivity study presented in Section 3[1[0[
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The kinematic boundary conditions to be imposed over the boundary of the half!cell in any
analyses are explicitly derived in the Appendix and are reported here for sake of clarity[ Referring
to Fig[ 2"b#\ these conditions read]

u"O# � 9 "4a#

1 = u0\K−u0\H

1h
−

u1\H

l
� 9 "4b#

u"xA#¦u"xB# � 1 = u"xC# [A\ B $ Gi] =
0
1
"xA¦xB# � xC "4c#

u"xH# � u"xK#¦u"xJ#[ "4d#

Here Gi "i � 9\ 0\ 1\ 2# is any side of the half!cell\ C is the mid!point of Gi "i[e[ C � O\ H\ K or J#\
A and B are any pair of points on Gi symmetric with respect to C[ Equations "4a\ b# suppress any
rigid!body motion of the cell\ whereas eqns "4b\ c# ensure strain!periodicity and compatibility of
the displacement _eld across adjacent cells[

2[1[ Simulation of elementary macroscopic strains and stresses

To simulate the composite behaviour under increasing elementary strains\ the unit cell has to be
analyzed with suitable boundary conditions[ As shown in the Appendix\ these conditions involve
only two points on the cell boundary "H and K in Fig[ 2"b#\ for instance# and can be obtained
from eqn "A4#[ Macroscopic uniaxial strains along x0 and x1 "E00\ E11# can be obtained\ respectively\
by imposing]

8
u0\H � E00 = l

u1\H � 9

u1\K � 9

cE � $
E00 9

9 9% "5a#

8
u0\H � 9

u1\H � 9

u1\K � E11 = h

cE � $
9 9

9 E11% "5b#

and a pure macroscopic shear strain "E01# can be simulated by imposing

F

j

J

f

u0\H � 9

u1\H � E01 = l

u1\K �
0
1

= u1\H � E01 =
l
1

cE � $
9 E01

E01 9 % [ "5c#

Equations "4#\ in conjunction with any combination of eqns "5a\ b\ c#\ form the complete set of
displacement boundary conditions to be imposed on the cell perimeter to reproduce any macro!
scopic strain[

The simulation of prescribed macroscopic stress conditions in a displacement!based approach
is more complicated[ An iterative procedure has in general to be used to modify the boundary
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displacement increments\ at any step of the nonlinear analysis\ to simulate prescribed macroscopic
stress increments[ In the present work\ attention is limited to elementary macroscopic stress
conditions\ namely uniaxial tension along x0 or x1 "S00 and S11# and pure shear S01[ In these cases\
symmetry considerations allow reproducing any elementary macroscopic stress by simply imposing
displacement boundary conditions at points H and K according to the following scheme]

u0\H � 9cS � $
S00 9

9 9%^ "6a#

u1\K � 9
u1\H � 9

cS � $
9 9

9 S11%^ "6b#

u1\H � 9cS � $
9 S01

S01 9 % [ "6c#

2[2[ Constitutive model for the components

Since the transverse behaviour of FRCs is investigated\ the possibility of _ber failure is disre!
garded[ Fibers are supposed to be elastic\ with a linear response throughout the loading history[
Perfect bonding at the interface between _ber and matrix is also assumed[ Allowing for the
possibility of decohesion or slipping between the two phases requires having detailed information
regarding the exact nature of the constituents\ possible interfacial treatments\ formation of an
interphase region\ etc[ "see e[g[ Ishida and Koenig\ 0875#[ Since the present work aims at deriving
results qualitatively applicable to di}erent BMCs\ rather than to a speci_c type of composite\ the
possibility of failure at the _berÐmatrix interface is not considered[ Note\ however\ that the
homogenization approach employed in the present work allows in principle for this possibility "see
the theoretical results obtained by Taliercio and Sagramoso "0884# for composites with imperfect
interfacial bonding#[

In the present study\ the brittle behaviour of the matrix was described through the {concrete|
model implemented in the computer program employed for the numerical analyses "ABAQUS
version 4[3#[ This model was originally conceived for plain concrete submitted to multiaxial stresses
with moderate con_ning pressure[ When the stress state is essentially compressive\ the material
response is modeled by an elastic!plastic theory\ using DruckerÐPrager yield criterion[ This portion
of the failure locus is denoted as {compression yield surface| and is shown in Fig[ 3"a# for the
biaxial case[ Associated ~ow rule and isotropic hardening are then used[ The equation of the
compression yield surface can be written as

fc � J1¦aI0−k � 9\ "7#

where I0\ J1 are the _rst stress invariant and the second invariant of the deviatoric stress\ respectively[
a is a nondimensional parameter de_ned as

a �
0

z2

sbc−sc

1sbc−sc

"8#



A[ Taliercio\ R[ Coruzzi : International Journal of Solids and Structures 25 "0888# 2480Ð2504 2488

Fig[ 3[ Assumed behaviour for the matrix material according to ABAQUS {concrete| model] "a# biaxial failure envelope^
"b# uniaxial stressÐstrain curves^ "c# stressÐdisplacement curve in tension for the A!type matrix[

where sc � the yield strength of the material in uniaxial compression and sbc � the yield strength
in equi!biaxial compression "see Fig[ 3"a##[ Finally\

k � 0
0

z2
−a1 sc^ "09#

k � k"lc# if the material hardens in compression\ where lc is a hardening parameter[ k is the yield
strength in simple shear if the material complies with DruckerÐPrager criterion both in tension
and compression[

The feature that renders the {concrete| model particularly suitable for the purposes of this work
is the possibility of describing cracking\ and the relevant loss in strength and sti}ness\ by means
of a post!peak strainÐsoftening behaviour in tension[ Cracking is assumed to occur when the stress
point reaches a {crack detection surface|[ The crack detection surface is the MohrÐCoulomb surface
"see Fig[ 3"a##

ft � J
1¦
0

z2 00−b
st "lt#

su
t 1 I
0−

0

z2 01−b
st "lt#

su
t 1 st "lt# � 9 "00#

where the stress measures I
0\ J
1 are computed similarly to I0\ J1\ but all stress components associated
with {open cracks| "see below# are neglected in these measures[ su

t is the failure stress in uniaxial
tension[ The nondimensional parameter b is given by
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b �
2su

bt−1su
t

1su
bt−su

t

"01#

where su
bt is the failure stress in equi!biaxial tension "see Fig[ 3"a##[ The relationship st � st"lt#

de_nes the post!peak strainÐsoftening behaviour of the material in uniaxial tension\ lt being an
inelastic strain measure "st "9# � su

t #[
Both lc and lt are computed by integration of the multipliers l¾c\ l¾t that de_ne the plastic strain

rates\ o¾pl
c \ o¾pl

t \ associated with the compression yield surface and the crack detection surface\
respectively\ through associated ~ow rules]

o¾pl
c � l¾c

1fc
1s

\ o¾pl
t � l¾ t

1ft
1s

[ "02#

As soon as a stress point activates the crack detection surface\ a {crack| is supposed to open
perpendicularly to the maximum principal component of the corresponding plastic strain rate
tensor o¾pl

t [ The crack orientation na is kept _xed in the rest of the calculation[ Once a crack has
formed\ a damaged elastic stressÐstrain law s � D

�
] oel\ with oel � o−opl

c \ is introduced to model the

cracked material region[ The sti}ness component "Daaaa# relating the direct stress "saa# and the
direct elastic strain "oel

aa# along na decreases according to a prescribed law "see ABAQUS Theory
Manual "0883# for further details#[ Poisson e}ects are neglected for open cracks] thus Daabg � 9
for b\ g � a[ In this work\ the shear response is supposed to be una}ected by cracking and the
elastic shear terms "Dabab\ with a � b# keep their initial undamaged values[ Upon unloading\ no
permanent strain is supposed to be stored in the cracked material along na[ Note that {crack
detection| plastic strains\ opl

t \ are just the outcome of a numerical device to treat cracking] these
strains are recast as elastic strains in the direction of cracking and as plastic strains in the other
directions[

The ABAQUS concrete model is deemed to be appropriate not only to describe the behaviour
of brittle matrix materials\ such as ceramics\ but also for certain types of polymeric matrices[
Indeed\ manufacturing processes can induce defects in polymers that originate a brittle behaviour
in tension with premature failure "Hull\ 0870#[ Also\ thermoplastic resins exhibit di}erent failure
modes according to the stress regime "see\ e[g[\ Kinloch and Young\ 0872#[ Under compressive
stresses\ {shear yielding| occurs] this type of nonlinear behaviour is essentially plastic\ either
hardening or perfectly plastic[ If the hydrostatic stress is positive\ the phenomenon of {crazing|
occurs and the relevant failure mode is brittle[ The {concrete| model employed here reasonably
reproduces the SternsteinÐOngchin two!mode failure envelope for polymethylÐmethacrylate
"Sternstein\ 0866# in the stress space\ except for the regions where the principal stresses are di}erent
in sign[

In the present work\ the nonlinear matrix behaviour is described by the uniaxial curves shown
in Fig[ 3"b#[ For BMCs\ two post!peak curves in tension are considered] one describes a {smooth|
softening behaviour "curve A#\ that is intended to simulate the progressive degradation of a
polymer that entirely loses its bearing capacity only at elevated strains^ the other one "curve B#
describes a {sharp| post!peak drop in strength and is rather intended to approach the behaviour of
a perfectly brittle matrix material[ The perfectly plastic case is also shown in Fig[ 3"b#[

It must be noted that ABAQUS concrete model is a {smeared crack model|\ since it does not
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Table 0
Properties of the constituents of the composites considered to validate the model in the elastic _eld

Glass:epoxy Modmor:epoxy

Property Fiber Matrix Property Fiber Matrix

E "MPa# 57\839 2319 EA "MPa# 121\999 4249
n 9[1 9[23 nA 9[168 9[243

ET "MPa# 04\999 4249
nT 9[389 9[243
GA "MPa# 13\999 0864

describe single cracks\ but rather associates to any integration point a region with degraded
mechanical properties[ Structural analyses involving strainÐsoftening materials are known to be
prone to mesh!sensitivity problems] the _nite element results do not converge to a unique solution\
since a mesh re_nement leads to narrower crack bands "see e[g[ Cris_eld\ 0875 for a discussion
about this point#[ In this work\ an attempt was made to alleviate mesh!sensitivity by taking the
fracture energy\ Gf\ as a material property "see Section 3[1[0#[ This requires prescribing the
constitutive law for the cracked material by a relationship between stress and {crack| displacement\
ucr � u−uel\ where uel is the elastic part of the displacement[ Crack detection inelastic strains are
converted into crack displacements by a {characteristic length| depending on the mesh size[ The
uniaxial response of the damaged material is shown in Fig[ 3"c# in the case of an A!type matrix
submitted to an unloading!reloading cycle[

ABAQUS is capable of performing nonlinear equilibrium analyses involving unstable materials
by means of the {modi_ed Riks method| "see e[g[ ABAQUS Theory Manual\ 0883#^ in principle\
this method makes it possible to follow also loadÐdisplacement curves characterized by a snap!
back behaviour "Cris_eld\ 0875#[

3[ Analysis of a unit cell subjected to elementary stresses

3[0[ Model validation in the elastic _eld

The reliability of the adopted numerical model was _rst checked in the linear elastic _eld by
applying it to two composites for which some theoretical and experimental data obtained by other
authors were available in the literature "Aboudi\ 0880#[ The considered composites are a glassÐ
epoxy system\ with isotropic constituents\ and a carbon "Modmor#Ðepoxy system\ with transversely
isotropic _bers[ The elastic constants of the constituents are listed in Table 0^ for Modmor _bers\
subscript A refers to the axial direction and subscript T to the transverse direction[

In Fig[ 4 the macroscopic transverse elastic modulus and Poisson|s ratio of the two composites
are plotted vs the _ber volume fraction\ vf[ The data plotted in Fig[ 4 include the numerical results
given by the present model\ the results of some experimental tests and the numerical and theoretical
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Fig[ 4[ Elastic properties of two composite materials predicted by the present model and compared with the theoretical
and experimental data by other authors "reported in Aboudi\ 0880#[ "a\ b#] glassÐepoxy^ "c\ d#] ModmorÐepoxy[

predictions of other researchers\ quoted in the captions of Fig[ 4[ The agreement between model
predictions and the other presented results is de_nitely encouraging[

3[1[ Numerical analyses of BMCs subject to elementary stresses

The results of some numerical analyses of composites with non!linear matrix will be now
described[ First\ the mesh reported in Fig[ 2"b# and described in Section 2[0 is shown to provide
reliable results\ as far as the macroscopic strength is concerned\ by numerically analyzing the mesh!
sensitivity of the results "Section 3[1[0#[ Then\ the cases of uniaxial tension along two di}erent
directions in any plane perpendicular to the _bers "Sections 3[1[1 and 3[1[2# and pure transverse
shear "Section 3[1[3# are considered[

The elastic and strength properties of the components considered in applications are listed in
Table 1[ These properties fall within the range of values that can be encountered for E!glass:epoxy
composites\ with _lled matrix that prematurely fractures in tension "see e[g[ Hull "0870# and the
ASM Engineered Material Handbook*vol[ 0\ 0876#[ Note\ however\ that the aim of this work is
to investigate the e}ects of the matrix brittleness upon the overall composite behaviour\ rather
than to study a speci_c material^ thus\ the selected values are essentially qualitative[ The assumed
volume fraction\ vf\ is 9[54[
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Table 1
Properties of the component materials assumed in the nonlinear analyses

Matrix Fiber

Young|s modulus\ E "MPa# 6499 61\999
Poisson|s ratio\ n 9[20 9[11
tensile strength\ su

t "MPa# 39 *
compressive strength\ sc "MPa# 039 *
equibiaxial tensile strength\ su

bt "MPa# 29 *
equibiaxial compressive strength\ sbc "MPa# 113 *

The two post!peak responses in tension corresponding to the uniaxial stress!strain curves A and
B in Fig[ 3"b# are considered for the matrix[ For sake of comparison\ the case of a perfectly plastic
matrix with the same uniaxial tensile and compressive strength as the brittle one is also analyzed]
in this case\ the matrix yield surface is de_ned by the DruckerÐPrager|s criterion "see Fig[ 3"a##[
The results of the analyses with perfectly plastic matrix were presented elsewhere "Taliercio\ 0886#[

The numerical results are presented in terms of macroscopic stress!strain curves and {crack|
distributions[ The elements where the matrix softens in tension are shown] cracks are schematized
by segments perpendicular to the {crack| direction na at any point "see Section 2[2#[

3[1[0[ In~uence of the mesh size on the macroscopic stren`th
A numerical study was _rst performed to check the sensitivity of the predicted macroscopic

response of the considered BMC to mesh re_nement[ Three discretizations for the half!cell were
considered\ namely a {coarse|\ a {medium| and a {_ne| mesh[ The coarse and _ne meshes are shown
in Fig[ 5"a# and "b#\ respectively^ the medium mesh was described in Section 2[0 "Fig[ 2"b## and
employed in the elastic analyses of Section 3[0[ The medium and _ne meshes have approximately
twice the number of nodes than the relevant coarser mesh in the matrix region[

The three meshes were employed to simulate macroscopic uniaxial tension tests along x0[ In
these applications\ the post!peak strength of the matrix is supposed to decrease linearly with
increasing deformation "A!type matrix#[ To alleviate the sensitivity of the solution to mesh re_ne!
ment\ in all analyses the postcracking behaviour of the matrix is de_ned by the same value of the
post!peak displacement\ u9\ at which the material entirely loses its strength "Fig[ 3"c##[ In this way\
the fracture energy of the material\ Gf\ is the same regardless of the mesh size[ Note that\ accord!
ingly\ the post!peak stress!strain curve is di}erent in each analysis\ since strains and displacements\
at any integration point\ are related by a characteristic length that depends on the _nite element
size[

Figure 6 shows the macroscopic stress!strain curves obtained with the three meshes[ The medium
and _ne meshes predict the same macroscopic peak stress and the global post!peak behaviour of
the composite\ whereas the coarse mesh overpredicts the macroscopic strength and gives a sti}er
post!peak response[ Thus\ no improvement seems to come from the use of a mesh _ner than the
{medium| one] this is the mesh used in subsequent applications[
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Fig[ 5[ Mesh!sensitivity analysis] "a# {coarse|^ and "b# {_ne| meshes employed in conjunction with the {medium| mesh of
Fig[ 2"b#[

Fig[ 6[ Mesh!sensitivity analysis] in~uence of the mesh size on the macroscopic response of an A!type matrix composite
subjected to uniaxial tension along x0 "S00#[

3[1[1[ Uniaxial tension alon` x0 "S00#
During the initial elastic stage\ the presence of a sti} inclusion "the _ber# {disturbs| the matrix

and induces\ on a microscopic level\ a stress peak in the matrix region between two adjacent _bers
aligned with the applied stress "Fig[ 7"a##^ in particular\ the maximum value of the microscopic
stress component s00 exceeds of about 59) the applied macroscopic stress S00[ If the matrix is
brittle\ beyond the elastic range damage and inelastic strains progressively localize in that region
"Fig[ 7"b##[ The crack con_guration at elevated macroscopic strains is shown in Fig[ 7"c#] a sort
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Fig[ 7[ A!type matrix composite subjected to uniaxial tension along x0 "S00#] "a# microscopic stress component s00 in the
elastic _eld^ "b# crack pattern in the matrix at the peak stress^ "c# _nal crack pattern] the moderately strained bands that
allow stress transmission at elevated macroscopic strains are outlined[

Fig[ 8[ Macroscopic stressÐstrain curves for composites with ductile and brittle matrices subjected to macroscopic
transverse tension S00[

of {macrocrack| that bridges any pair of adjacent _bers along the axis perpendicular to the applied
stress can be identi_ed^ another {macrocrack| tends to develop at the _berÐmatrix interface[

The results shown in Fig[ 7 refer to a composite with A!type matrix[ The evolution of the
crack pattern\ however\ is essentially the same for both A!type and B!type matrix composites[
Accordingly\ the two types of composites have nearly the same macroscopic strength[ This is
shown in Fig[ 8\ where the macroscopic stressÐstrain curves for the two BMCs subjected to uniaxial
transverse tension S00 are reported and compared with the homologous curve for a ductileÐmatrix
composite[ The macroscopic strength of the two BMCs is about one half of the macroscopic yield
strength obtained for a perfectly!plastic matrix^ it is also much lower than the strength of the
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Fig[ 09[ Deformed assemblage of cells subjected to macroscopic transverse tension S00^ the moderately strained bands
that allow stress transmission at elevated macroscopic strains are outlined[

unreinforced matrix in plane strain conditions "that is\ 33[1 MPa#\ indicated in Fig[ 8[ Beyond the
peak stress\ the propagation of damage leads to a sharp decrease in the macroscopic carrying
capacity of the composite and a strain!softening behaviour[ The sharper drop in strength associated
with the B!type matrix composite re~ects into a macroscopic post!peak behaviour more brittle
than with the A!type matrix composite "Fig[ 8#[

Note that the composite keeps a non!zero residual strength as the macroscopic strain increases\
although the microscopic strain vanishes with increasing microscopic strain[ This comes both from
the assumed perfect bonding at the _ber!matrix interface and from the _ber volume fraction
considered in applications[ This can be inferred from Fig[ 09 where several deformed unit cells are
shown at high macroscopic strain[ In the matrix region\ bands that run nearly parallel to the
applied stress exist\ where strains are moderate even at elevated macroscopic strains] it is from
these bands that the macroscopic residual strength comes[ The bands intersect the tips of the
{macrocracks| orthogonal to the applied stress\ where strains are limited because of the assumed
perfect interfacial bonding "compare Figs 7"c# and 09#[ If a BMC with smaller _ber volume fraction
were analyzed\ the bands would cross the {macrocracks| in the central highly strained zone\ thus
preventing stress transmission and giving zero macroscopic residual strength[ The interfacial
macrocracks "see Fig[ 7"c## do not signi_cantly decrease the load carrying capacity of the bands\
because\ according to ABAQUS concrete model\ the softening behaviour a}ects only the stress
component perpendicular to the crack[ This remaining load carrying capacity is likely to be
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Fig[ 00[ A!type matrix composite subjected to uniaxial tension along x1 "S11#] "a# microscopic stress component s11 in
the elastic _eld^ "b# crack pattern in the matrix at the peak stress^ "c# _nal crack pattern[

unrealistic for real BMCs^ this inconsistency could be removed by taking an interface criterion
into account[

3[1[2[ Uniaxial tension alon` x1 "S11#
During the initial elastic stage\ on a macroscopic level the composite behaves equally either

when stressed along x0 or along x1\ according to its transversely isotropic nature[ The microscopic
stress and strain _elds corresponding to the two macroscopic stress conditions\ however\ are
di}erent[ This can be appreciated comparing Fig[ 7"a# and Fig[ 00"a#] in the latter _gure\ the
distribution of the microscopic stress component s11 associated with a uniaxial macroscopic tension
S11 in the elastic range is shown[ Beyond the elastic range\ the symmetry in mechanical properties
of the material is lost[ Damage nucleates at the _ber!matrix interface "Fig[ 00"b## and propagates
along this surface until a sort of two!branched macrocrack forms and bridges two adjacent _bers
"Fig[ 00"c##[

In this case also\ the results of the analyses with A!type and B!type matrix are not substantially
di}erent as far as the peak stress values and the crack patterns are concerned[ This is shown in
Fig[ 01\ where the macroscopic stress!strain curves of the two BMCs and the ductile!matrix
composites are reported[ The macroscopic strength of the BMC is about 34) lower than the
strength of the perfectly plastic composite at "moderately# large strains[ The smoother or sharper
strainÐsoftening behaviour of the matrix in tension mainly a}ects the post!peak macroscopic
response[ The residual strength of the composites can be motivated by arguments similar to those
made in the case of uniaxial tension along x0[ The results at elevated macroscopic strains\ however\
have little interest on account of the many approximations made regarding the behaviour of the
phases "see the comment at the end of the previous section#[

The di}erent crack patterns in the two cases of uniaxial tension along x0 or x1 are matched by
an anisotropic behaviour of the composite beyond the elastic _eld "Fig[ 02#[ In particular\ the peak
value of the macroscopic stress S11 exceeds of about 29) the corresponding value in uniaxial
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Fig[ 01[ Macroscopic stressÐstrain curves for composites with ductile and brittle matrices subjected to macroscopic
transverse tension S11[

Fig[ 02[ Comparison of the macroscopic stressÐstrain curves for composites with A!type matrix subjected to tension
along x0 or x1[

tension along x0[ Also\ the composite behaviour is macroscopically more brittle than in uniaxial
tension along x0[ On the contrary\ the numerically computed macroscopic yield stresses indicate
that the ductile matrix composite maintains its transversely isotropic nature\ although its response
before failure is di}erent according to the direction of the applied macroscopic stress[

3[1[3[ Pure transverse shear "S01#
In the elastic range\ the microscopic stress and strain components produced by a macroscopic

shear stress S01 have symmetric "or anti!symmetric# distributions across the cell[ Symmetry proper!
ties are lost beyond the linear range[ This is due to the unsymmetric behaviour of the matrix in
tension and compression\ rather than to brittleness[ The A!type matrix composite starts damaging
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Fig[ 03[ A!type matrix composite subjected to transverse shear "S01#] "a# crack pattern in the matrix at the peak stress^
"b# _nal crack pattern[

Fig[ 04[ Macroscopic stressÐstrain curves for composites with ductile and brittle matrices subjected to macroscopic
transverse shear S01[

at the interface "Fig[ 03"a##[ Then cracks propagate so as to bridge two adjacent _bers\ and
macrocracks form that are essentially perpendicular to the macroscopic principal tensile stress
"Fig[ 03"b##[ Damage nucleation is similar for the B!type matrix composite\ but the post!peak
drop in strength is so abrupt that the composite response could not be followed[ The macroscopic
stressÐstrain curves in pure shear are shown in Fig[ 04[ Here again\ the strength of the BMCs is
lower than the pure shear strength of the unreinforced matrix "k � 24[8 MPa#\ indicated in Fig[
04[ The ductile matrix composite in pure shear has a progressively strain!hardening behaviour
accompanied by an out!of!plane macroscopic compression S22 beyond the elastic range\ so that
no macroscopic shear limit could be identi_ed[
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4[ Discussion and conclusions

A numerical model has been presented to investigate the behaviour of brittleÐmatrix _ber!
reinforced composites subjected to transverse stresses[ In principle\ the method can be applied to
any macroscopic stress conditions*provided that a 2!D _nite element model with suitable bound!
ary conditions is developed[ The main results of the performed analyses can be summarized as
follows]

"a# The macroscopic tensile and shear strengths of a BMC are much lower than both the strength
of companion ductileÐmatrix composites and the strength of the unreinforced matrix[ In
tension\ the predicted macroscopic strength of the considered BMCs is lower of about 34Ð
44) than the strength of a companion ductile matrix composite[

"b# A certain induced anisotropy arises in the damaged BMCs[ In any plane transverse to the
_bers\ the macroscopic tensile strength depends on the direction of the applied stress[ The
composite exhibits lower tensile macroscopic strength when stressed along x0\ that is\ the
direction along which the pairs of contiguous _bers have the minimum distance and for which
macrocracks form perpendicular to the applied stress[

"c# The slope of the post!peak softening branch does not signi_cantly a}ect the macroscopic
strength\ but rather a}ects the composite post!peak response[ This would indicate that the
results presented here apply also for ceramic composites with perfectly brittle matrix\ as far as
the decrease in macroscopic strength is concerned[

In the present work\ the use of fracture energy as a material parameter alleviated the mesh
sensitivity of the results\ as shown by the numerical study illustrated in Section 3[1[0[ An alternative
approach to the numerical study of BMCs is o}ered by {regularization techniques| that involve
di}erential operators of the plastic multipliers and make non!local the constitutive model "see e[g[
Comi and Perego\ 0885#[ These techniques can improve the description of the micro_elds\ but are
usually computationally expensive[ It is believed that the performed analyses can be su.ciently
exhaustive to quantify the decrease in strength of a BMC respect to a ductile one\ which is the
main result of this work[

In the analyses presented in this work\ strains were assumed to be small[ This may not be the
case for polymericÐmatrix composites\ since some polymers can undergo large strains] this is
particularly true beyond the yield point[ In present applications\ the correctness of this assumption
was ascertained {a posteriori|\ by checking the smallness of the computed strains[

As a consequence of its theoretical origin\ the model presented can only account for the loss in
bearing capacity of a composite structure coming from the formation of evenly distributed cracks[
This is the situation that would occur in an ideal unbounded medium with exactly periodic
mechanical properties[ The analysis of any unit cell\ assumed to be representative of the entire
composite\ does not allow one to account for phenomena such as delamination\ possibly originated
by edge e}ects\ that are often responsible for the failure of laminated structures[

It must also be acknowledged that a more rigorous approach to the homogenization of BMCs
would require computations much more complex than those performed here[ Indeed\ homo!
genization does not apply in a simple form for periodic media with components possessing a non!
convex energy "see\ e[g[\ Mu�ller\ 0876#[ Instead of one cell\ all solutions that are periodic over an
ensemble of cells\ which is not known a priori\ have to be considered to compute the exact energy
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stored in the homogenized material[ This homogenization result is very di.cult to use in practice
and the dependence of the _ndings on the number of unit cells has not been investigated in this
work[ Thus\ in principle the approach employed here predicts a homogenized behaviour {sti}er|
than the exact one[

The assumed periodicity in the model might lead to results not appropriate for real composites\
reinforced by a random array of _bers[ This was numerically shown by Brockenborough et al[
"0880# for ductile matrix composites under transverse tension[ Note\ however\ that the same
authors also showed that a periodic hexagonal reinforcing array\ of the type considered here\
allows matching the {exact| results yielded by a nonperiodic array more closely than other types of
periodic _ber packing arrangements[

The presented numerical predictions await now a con_rmation by experimental test data\ also
on account of the many simpli_cations made and listed above[

Future developments of the present works will aim at taking interface e}ects into account "see
also the discussion in Section 2[2# and at extending the analyses to di}erent types of matrix
behaviour[ For unidirectional polymeric composites subjected to transverse loads time e}ects can
be extremely signi_cant "see\ e[g[\ Chen et al[\ 0884#\ so that creep strains in the matrix cannot be
neglected[ The approach employed here would be alternative to the semi!analytical method recently
proposed by Fotiu and Nemat!Nasser "0885# for viscoplastic composites\ or the micromechanical
approach based on the use of Eshelby|s equivalent!inclusion principle by Chen et al[ "0884# for
linear viscoelastic composites[

Appendix] Displacement boundary conditions

In this Appendix\ the kinematic boundary conditions that were imposed in the numerical
analyses of the unit cell to ensure strain!periodicity of the microscopic displacement _eld will be
derived[

Consider the hexagonal unit cell shown in Fig[ A0"a# and de_ne an orthonormal reference
system "Ox0x1# with origin in the center of the cell[ The boundary 1V of the entire cell can be
subdivided into several parts] 1V � G0 k G?0 k G1 k G?1 k G2 k G?2^ the boundary of the dis!
cretized half!cell consists of the parts G0\ G1 and G2\ in addition to the segment G9 of the symmetry
axis x1[

In all numerical applications\ boundary conditions were imposed to suppress any rigid body
motions of the cell[ The condition

u"O# � 9 "A0#

suppresses rigid translations[ To suppress rigid rotations preserving the periodicity requirements
of the displacement _eld\ it is _rst necessary to establish relationships between the macroscopic
strains and the components of the microscopic displacements at some points[ Let eqn "1# be written
for points K and K? "Fig[ A0"a##^ if the symmetry condition u"xK# � −u"xK?# is imposed\ along
with the periodicity condition v"xK# � v"xK?#\ one gets

1 = u"xK# � E ="xK−xK?# 0 E = w1 "A1#

Similarly\ considering points H and H? the condition
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Fig[ A0[ Description of the discretized unit cell] "a# segments forming the boundary^ "b# typical points involved in
symmetry and periodicity conditions[

1 = u"xH# � E = w0 "A2#

is obtained[ In explicit form\ eqns "A1# and "A2# read

1 = u"xK# � E = w1\ 6
1 = u0\K � E00 = l¦E01 = 1 = h

1 = u1\K � E10 = l¦E11 = 1 = h
^ "A3a#

1 = u"xH# � E = w0\ 6
1 = u0\H � E00 = 1 = l

1 = u1\H � E10 = 1 = l
"A3b#

Thus\ the components of the macroscopic strain tensor E can be expressed in terms of the
displacement components of H and K]

E � $
E00 E01

E10 E11%�

K

H

H

k

u0\H

l
1 = u0\K−u0\H

1h

u1\H

l
1 = u1\K−u1\H

1h

L

H

H

l

"A4#

Imposing the symmetry of tensor E amounts at suppressing the "in_nitesimal# rigid rotations of
the cell[ The condition E01 � E10 gives

1 = u0\K−u0\H

3h
−

u1\H

1l
� 9[ "A5#

The boundary conditions that reproduce the strain!periodicity requirement for the displacement
_eld and ensure inter!elemental continuity of the deformed cells are now derived[ Consider any
side of the cell\ e[g[ G1 "Fig[ A0"b##\ the mid!point of this side "K\ for side G1# and two points
"A\ B# on the same side symmetric with respect to it[ If eqn "1# is specialized to these points\ one
gets]
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u"xA# � E = xA¦v"xA# "A6a#

u"xB# � E = xB¦v"xB# "A6b#

u"xK# � E = xK¦v"xK# "A6c#

Combining eqns "A6aÐc# and noting that xK � 0
1
"xA¦xB# yields]

u"xA#¦u"xB#−1 = u"xK# � v"xA#¦v"xB#−1 = v"xK#[ "A7a#

Similarly\ for the side opposite to G1 "i[e[ G?1# one has

u"xA?#¦u"xB?#−1 = u"xK?# � v"xA?#¦v"xB?#−1 = v"xK?#[ "A7b#

The deformed cell must possess the same central symmetry respect to O as the undeformed one[
Thus]

u"xA# � −u"xA?#^ u"xB# � −u"xB?#^ u"xK# � −u"xK?#[ "A8#

Also\ referring to the periodic part of the displacement _eld]

v"xA# � v"xB?#^ v"xB# � v"xA?#^ v"xK# � v"xK?# "A09#

Substituting eqns "A8#\ "A09# in eqn "A7b# and combining it with eqn "A7a# yields the condition
that relates the displacements of any pair of points A\ B on G1\ symmetric respect to the mid!point
K of this side\ to the displacement of K itself]

u"xA#¦u"xB# � 1 = u"xK# [A\ B $ G1 such that 0
1
"xA¦xB# � xK "A00#

Similar conditions obviously apply along G0 and G2[ Along the symmetry axis x1 the periodic part
of the displacement _eld must vanish[ Thus\ for any pair of points D\ E $ G9\ symmetric respect to
the center O "i[e[ with xD � −xE\ Fig[ A0"b## the condition

u"xD#¦u"xE# � 9 "A01#

holds[ In addition to the conditions derived up to here\ a relationship must be found to ensure that
the deformed sides all belong to the boundary of the same deformed half!cell[ An equation similar
to eqns "5# and "6# can be written for the mid!point of J of side G2 "see Fig[ A0"a##]

1 = u"xJ# � E = w2[ "A02#

Equations "A1#\ "A2#\ "A02# and the condition w0 � w1¦w2 lead to the relationship sought\ that
involves the displacement of the mid!points of the outer boundary of the half!cell]

u"xH# � u"xK#¦u"xJ# "A03#

In conclusion\ eqns "A3#\ "A5#\ "A00# and "A03# form the set of conditions to be imposed over
the boundary of the half!cell in any _nite element analysis "see also eqns "4aÐd# in Section 2[0#[
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